

Forschergruppe SONARO

Smarte Objektübernahme und –übergabe für die nutzerzentrierte mobile Assistenzrobotik

3. Workshop / Beiratstreffen am 26.5.2020

Agenda

	→	13:00	Prof. Groß	Begrüßung der Teilnehmer und Einführung zu den Eckdaten des Projektes im 2. Halbjahr
		13:15	Dr. Müller	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-NIKR
		13:40	M.Sc. Zhang	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-QBV
		14:05	M.Sc. Schneider	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von HSM
		14:30	Dr. Garten	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von GFE
		14:55		Diskussion mit dem Beirat zur Schwerpunktsetzung und Vorgehensweise

Vorstellung - SONARO Forschergruppe

TU Ilmenau, FG Neuroinformatik und Kognitive Robotik **TUI-NIKR**

Dr. Müller

TU Ilmenau, FG Qualitätssicherung und Industrielle Bildverarbeitung **TUI-QBV**

Prof. Notni

M. Sc. Zhang

Hochschule Schmalkalden, FG Eingebettete Diagnosesysteme **HSM**

Fertigungstechnik und Entwicklung Schmalkalden e.V. GFE

ILMENAU

TECHNISCHE UNIVERSITÄT

Dr. Welzel

SONARO Unternehmensbeirats

- Herr Trabert, Metralabs GmbH, Ilmenau
- Herr Waldmann, Betriebsleiter HENKEL+ROTH GmbH, Ilmenau
- - Herr Hofmann, Cluster für Fertigungstechnik & Metallbearbeitung
- - Herr Behling, Götting KG, Lehrte
- - Herr Richter, Präsident des Honda Research Institute Europe
 - Vision & Control GmbH, Suhl
 - Hörisch Präzision GmbH
 - SCS Robotik UG, Schmalkalden

Eckdaten der Forschergruppe

- ThZM als Antragsteller
- Koordinator: TU-Ilmenau FG NI&KR (Prof. Groß)
- Laufzeit 33 Monate seit 1.4.2019
- Fördersumme: 699.020 EUR
- 4 Mitarbeiter sind anteilig eingestellt
- ThZM stellt Mittel für Forschungstechnik (Roboter, Manipulatoren) zur Verfügung

Ablauf einer Objektübernahme/-übergabe

Projektorganisation

- Regelmäßige Statustreffen aller Partner zum kurzfristigen Austausch des Entwicklungsstandes und der Abstimmung
 - 8.11.2019 (bei TUI-NIKR)
 - 27.11.2019 (bei HSM)
 - 22.01.2020 (bei GFE)
 - 2.03.2020 (bei TUI-QBV)
 - 7.4.2020 (Skype)
 - **3**0.4.2020 (Skype)
- Bilaterale Zusammenarbeit zu Teilfragestellungen
 - Integrationstreffen (noch vor Coronaeinschränkungen)
 - TUI-NIKR bei GFE und HSM
 - HSM bei TUI-NIKR
 - GFE bei TUI-NIKR

Getätigte Investitionen über ThZM

- Mobiler Assistenzroboter mit zwei Armen
 - Finanzierung durch ThZM
 - Scitos-X3
 - 2x Kinova Arme mit 3 Finger Greifern
 - Kosten: 131 T€
 - Übergabe am 14.11.2019

- Mobiler mit UR10 Roboterarm
 - Finanzierung durch ThZM
 - RBKairos 10 (mobile Plattform)
 - 5 Finger Hand (SCHUNK SVH)
 - Kosten: 125 T€
 - Übergabe am 03.03.2020

Studentische Arbeiten im Zeitraum 4-9/2019

TUI-NIKR:

- **BA Julius Lerm**: 2D zu 3D Transformation für bildbasierte Skeletttracker.
- MA Tim-Justin Aldinger: Bewegungssteuerung für einen Roboter mit Greifer.
- **BA Wei Dai**: Approximation der Greifgütefunktion mit neuronalen Netzen.
- BA Hung Le Huy: Entwicklung eines Tools zur Kalibrierung der extrinsischen Kameraparameter auf mobilen Robotern.

TUI-QBV:

- MA Yan Jinggang: Untersuchung zur Nutzbarkeit des Convolutional-Neural-Networks für die echtzeitfähige Objektdetektion auf Basis von Farb- und 3D-Bilddaten. TU-Ilmenau, 2019
- Projektarbeit Yujian Yuan, Xiaojiang Han und Jinxin Zhu: Untersuchung zum Verfahren der Kalibrierung und der Registrierung von 3D-Kamera und Thermokamera

HSM:

Projektarbeit: Nicolas Schmitt, Tony Schneider: *RTLS-Ortungssystem: Bestimmung von Messerfehlern durch unterschiedliche Materialien.* Hochschule Schmalkalden, 2019

Umgang mit Corona-bedingten Einschränkungen?

TU Ilmenau / HSM:

- angeordnetes Homeoffice seit 23.3.2020
- kein Zugriff auf Robotertechnik und Labor
- Rechentechnik für Machine-Learning Experimente kann remote genutzt werden
- Betreuung studentischer Arbeiten auch nur über Videotelefonie

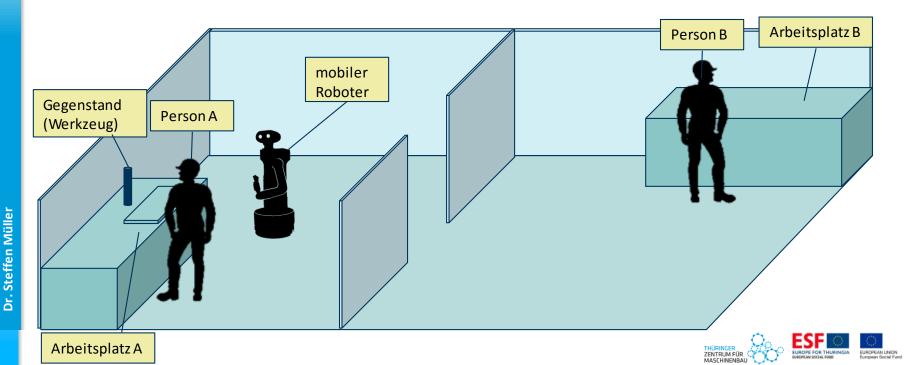
• GFE:

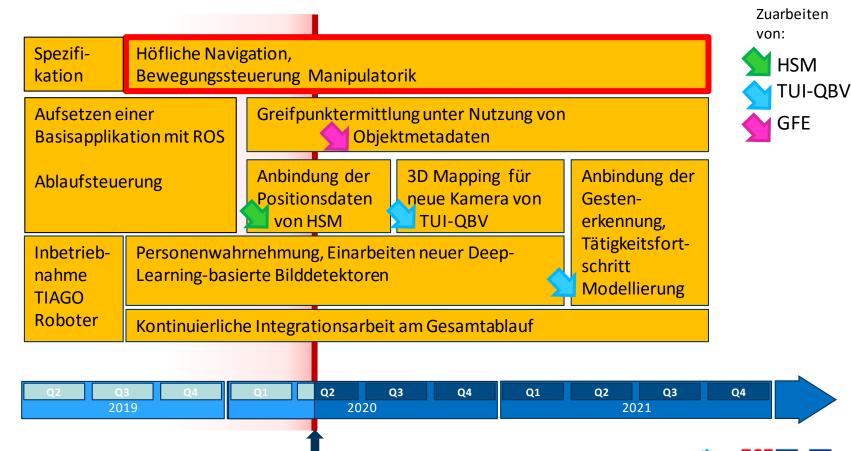
- Mitarbeiter mit betreuungspflichtigen Kindern, welche unterstützende Tätigkeiten im Projekt leisten, derzeit im Homeoffice => angepasste Organisation der Arbeitsabläufe, Kommunikation via Skype
- Versuche mit Robotertechnik an der TU Ilmenau waren nicht möglich aufgrund von Dienstreisebeschränkungen => Arbeit mit aufgezeichneten Bild- und Videomaterial
- keine Bewerber auf ausgeschriebene studentische Arbeiten
 Änderung der Situation abhängig von bildungs- und hochschulpolitischen Entscheidungen
- Statustreffen in der Forschergruppe nur via Skype möglich

Agenda

13:00	Prof. Groß	Begrüßung der Teilnehmer und Einführung zu den
		Eckdaten des Projektes im 2. Halbjahr
13:15	Dr. Müller	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-NIKR
13:40	M.Sc. Zhang	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-QBV
14:05	M.Sc. Schneider	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von HSM
14:30	Dr. Garten	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von GFE
14:55		Diskussion mit dem Beirat zur Schwerpunktsetzung und Vorgehensweise

Forschergruppe SONARO Smarte Objektübernahme und –übergabe für die nutzerzentrierte mobile Assistenzrobotik


Beiratstreffen am 26.5.2020 Vorstellung der Arbeiten von TU-Ilmenau NI&KR


Demonstrationsszenario: Einsatz in der Produktion

- Zwei oder mehr Montageplätze an denen Werker Montagearbeiten ausführen
- Bedarf: Werkzeug/Werkstück wird durch den Roboter von Person A übernommen und zu Person B gebracht und übergeben

Arbeitsplan für TUI-NIKR über die Projektlaufzeit

Arbeitspaket Navigation & Bewegungssteuerung

Milestone 1: Roboter betriebsbereit, kann Personen wahrnehmen und autonom navigieren

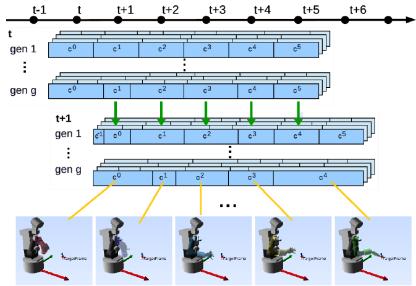
Ausgangspunkt:

- Tiago Roboter ist an MIRA angebunden, Navigation mit 2d Hindernisvermeidung über Laserscanner
- Steuerung des Greifarms mit ROS Movelt (nicht reaktiv für dynamische Umgebung)

Erreichter Stand:

Abgeschlossene Masterarbeit zur Untersuchung eines alternativen Ansatzes: Evolutionäre Bewegungsplanung

> MA Tim-Justin Aldinger 2020: Bewegungssteuerung für einen Roboter mit Greifer.



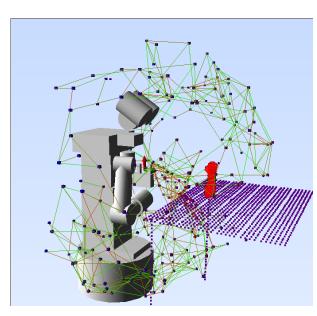
Evolutionäre Bewegungssteuerung

Ergebnisse der MA:

- Idee: Population von Bewegungstrajektorien im hochdimensionalen Konfigurationsraum des Roboterarmes wird durch lokale Mutationen und Selektion schritt-weise optimiert bzgl. verschiedener Zielfunktionen
- Auswertung auf Simulation
- Fazit: Lokale Optimierung der Bewegungstrajektorien in Echtzeit funktioniert prinzipiell, ist aber praktisch nicht nutzbar (resultierende Bewegungen sind zu unruhig, Suchraum (7^t Dimensionen) zu komplex)
- **Problem:** kein globaler Planer, welcher lokale Optima überwinden könnte → Arm bleibt vor Hindernissen hängen, wenn das Ziel dahinter liegt

Bewegungssteuerung Weiterentwicklung

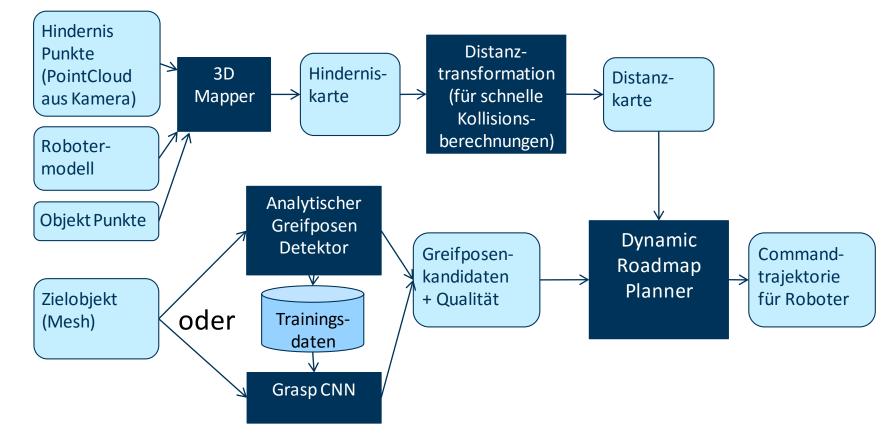
- Durchgeführte weiterführende Untersuchungen:
 - Pareto-Optimierung zur Verbesserung der Diversität in der Population → mehrere Zielfunktionen werden unabhängig voneinander optimiert
 - Leider keine signifikante Verbesserung der globalen Zielführung
 - Nutzung eines globalen Planers (Rapidly-exploring random tree RRT)
 → nur geringe Verbesserung, zu langsam um im Echtzeitbetrieb regelmäßig einen globalen Pfad zu liefern



Weitere Arbeiten zur Bewegungssteuerung

Neues Konzept:

- Roadmap Planer + Evolutionäre Optimierung für dynamische Umgebung
- Persistenter Roadmap Graph wird kontinuierlich erweitert durch zufälliges Sampling (wie bei RRT)
- Berücksichtigung der kollisionsfreien Erreichbarkeit
- Schnelle Planung auf dem Graph in Echtzeit
 - Z.B. Dijkstra Algorithmus
- Lokale Optimierung des Graphen entlang geplanter Trajektorie
- Implementierung einer GraspObjective (Zielfunktion)
 - Nutzt Menge von möglichen Greifposen und wählt automatisch die am besten erreichbare als Ziel aus

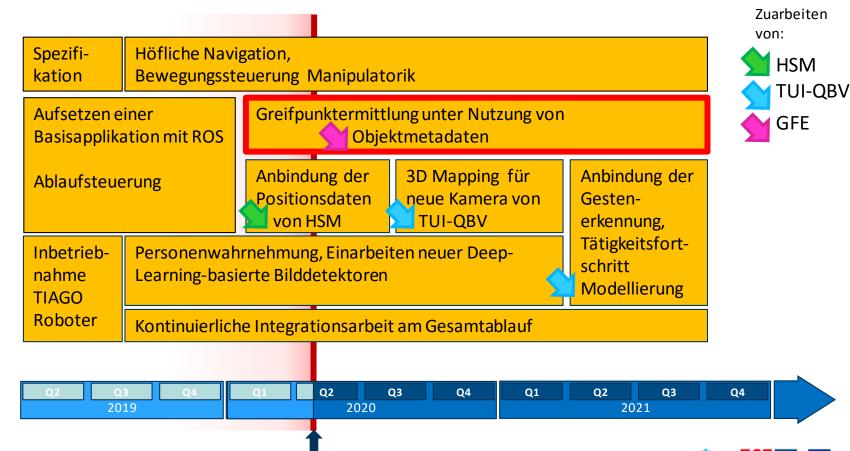


Systemarchitektur Bewegungssteuerung

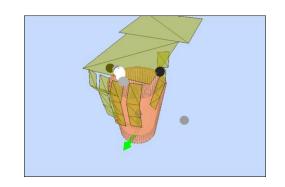
Arbeitspaket Bewegungssteuerung

Weiteres Vorgehen:

- Optimierung des Bewegungsplaners auf realer Hardware (Tiago)
- Übertragung auf zweiarmigen Roboter
- Erprobung alternativer Bibliotheken zur Kollisionsberechnung (Flexible-Collision-Library)


 Implementierung der Behaviors für den Greifablauf (Zusammenspiel von Personenerkennung, Objektdetektion und Greifsteuerung)

Arbeitsplan für TUI-NIKR über die Projektlaufzeit



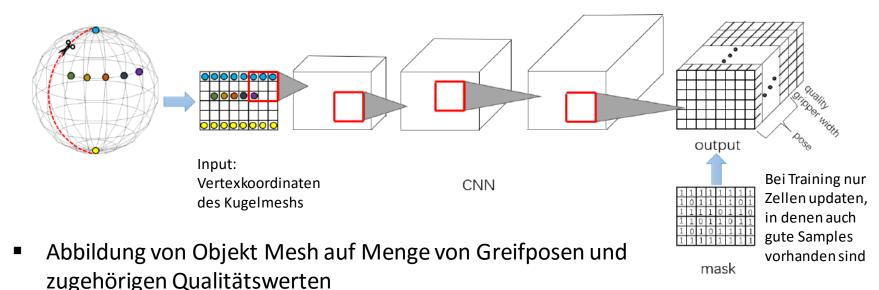
Arbeitspaket Greifpunktbestimmung

Ausgangspunkt:

- Erster Versuch über Tiefenbild GGCNN (ging eher schlecht als recht)
- Analytischer Greifposenoptimierer für Mesh
 Objektmodelle (MA Daniel Rink, TU Ilmenau, 2019)

Erreichter Stand:

Abgeschlossene Bachelorarbeit **BA Wei Dai, TU Ilmenau, 2020**: Approximation der Greifgütefunktion mit neuronalen Netzen.

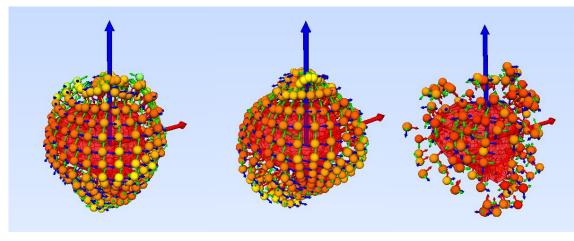

- Verkürzung der Berechnungszeit gegenüber analytischem Modell
- Dichte Greifposenkandidaten gegenüber Samples beim anal. Modell
- Entwicklung einer neuen Lossfunktion für das Training mit suboptimalen Datensätzen

Greifpunktbestimmung mit Convolutional Network

- Feste Inputgröße erforderlich → normierte Objekte mit Kugeltopologie (Polarkoordinaten)
- Für jede Längen-/Breitenkoordinate kann das Netz eine lokale Greifpose vorhersagen
- Nutzung von Invarianzen bei Rotation des Objektes durch Convolutional Architektur

Steffen Müller

Greifpunktbestimmung mit Convolutional Netzen


Max Loss Function

Problem:

Durch schlechtes Sampling im Trainingsdatensatz kommt es zu widersprüchlichen Labels im Trainingsdatensatz.

Ziel: beim Training sollen dominierte Datenpunkte unterdrückt werden.

Iterativer Prozess nutzt
Datenunsicherheit, um bei
widersprüchlichen Daten die
schlechteren abzuwichten

CNN Output mse

CNN Output max loss

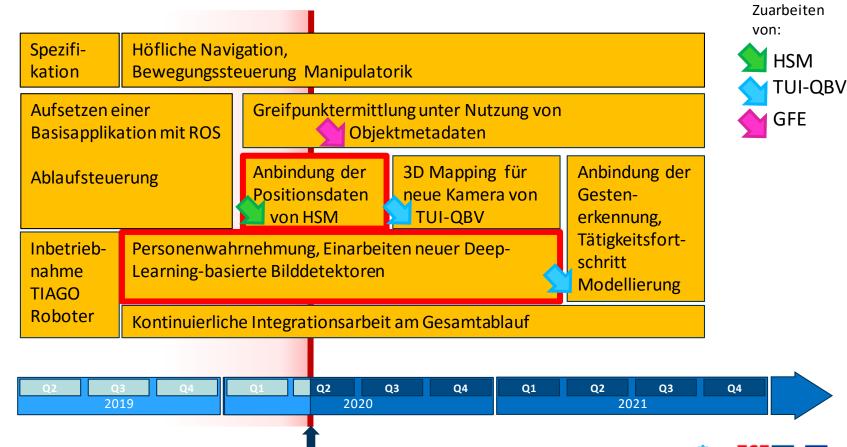
analytisch bestimmte Trainingsdaten

Arbeitspaket Greifpunktbestimmung

Erreichter Stand:

Integration der Greifposenbestimmung in Bewegungsplanungspipeline

Weiteres Vorgehen:


- Integration von Affordanzen in die GraspCNNs
- Woher kommt das Objekt Mesh Modell?
 - Verfahren zur Schätzung des Meshs aus Tiefen- bzw. Farbbildern
- Praktische Evaluation der Greifposen mit dem Roboter
 - Teststand f
 ür wiederholtes automatisches Greifen
 - → Einschätzung welche Greifqualitätswerte welcher Erfolgsquote im realen System entsprechen

Arbeitsplan für TUI-NIKR über die Projektlaufzeit

Arbeitspaket Personenwahrnehmung

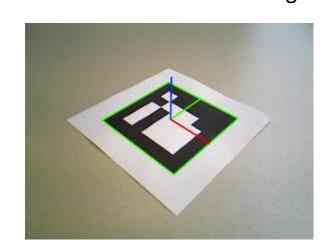
Ausganspunkt:

- Roboter wurde mit 2 Weitwinkelkameras und Nvidia Jetson Xavier GPU aufgerüstet.
- Modularer Personentracker aus Vorgängerprojekt

• Erreichter Stand:

- Integration des YOLOv2 Detektors auf GPU
- Anbindung der Detektionsergebnisse an den Personentracker
- Umrechnung der Bildkoordinaten in 3D Weltkoordinaten über
 Fusspunktdetektion und Schnitt der Sichtstrahlen mit der Bodenebene
- Kalibrierung der extrinsischen Parameter der Kameras
- Publikation:

Müller, St., Wengefeld, T., Trinh, T. Q., Aganian, D., Eisenbach, M. Gross, H.-M. A Multi-Modal Person Perception Framework for Socially Interactive Mobile Service Robots. Sensors, vol. 20 (2020) 3, 722, 18 pages


Arbeitspaket Kalibrierung der Kameras

Erreichter Stand:

Abgeschlossene Bachelorarbeit:

BA Hung Le Huy, TU Ilmenau, 2020: Entwicklung eines Tools zur Kalibrierung der extrinsischen Kameraparameter auf mobilen Robotern.

 Idee: Marker-basierte Lokalisierung der Kameras während einer Kalibrierfahrt, anschließen Optimierung der Kameraparameter durch Fehlerminimierung

Arbeitspaket Personenwahrnehmung

Ausblick:

- Persistente Personenwiedererkennung anhand von Gesichtsmerkmalen
- Bislang nur kurzzeitige Wiedererkennung für die Vermeidung von Track-abrissen bei Verdeckung
- Einbindung neuer Detektoren falls diese performanter sind (ggf. YOLOv4)

Anbindung der Lokalisationsdaten von RTLS Flares

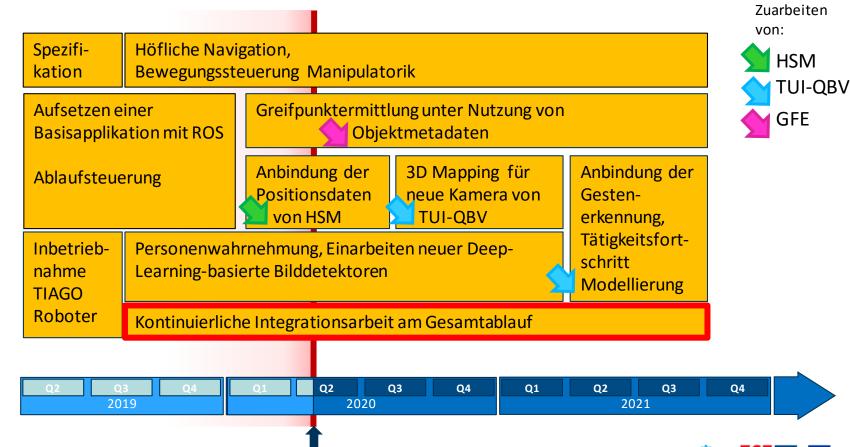
Ausgangspunkt:

RTLS Flares (von HSM) liefern Positionsdaten über serielle Schnittstelle

• Erreichter Stand:

- MIRA Unit zum Empfang der Positionsdaten
- Anbindung an Personentracker (bislang ohne Unsicherheiten)

Weiteres Vorgehen:


- Nutzung der Positionen von Werkzeugen/Teilen für die Auswahl der Person zum Übernehmen der Gegenstände
- Berücksichtigung der Unsicherheiten wenn verfügbar

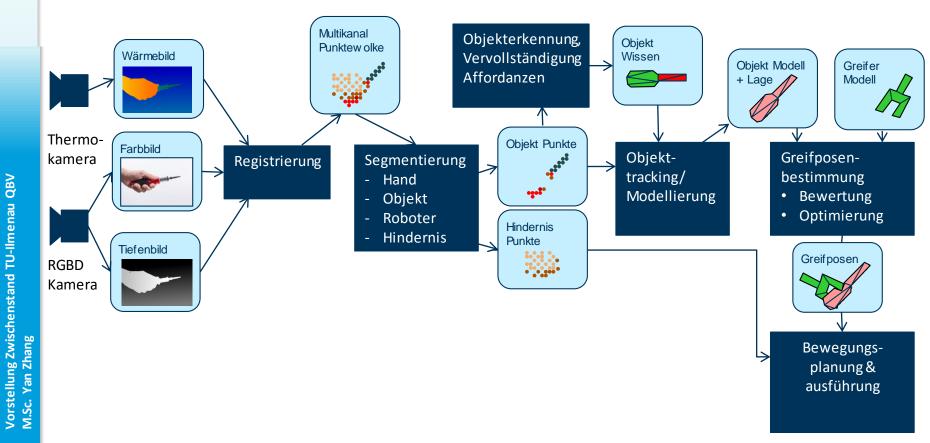
Arbeitsplan für TUI-NIKR über die Projektlaufzeit

Arbeitspaket Integration / Demonstrator

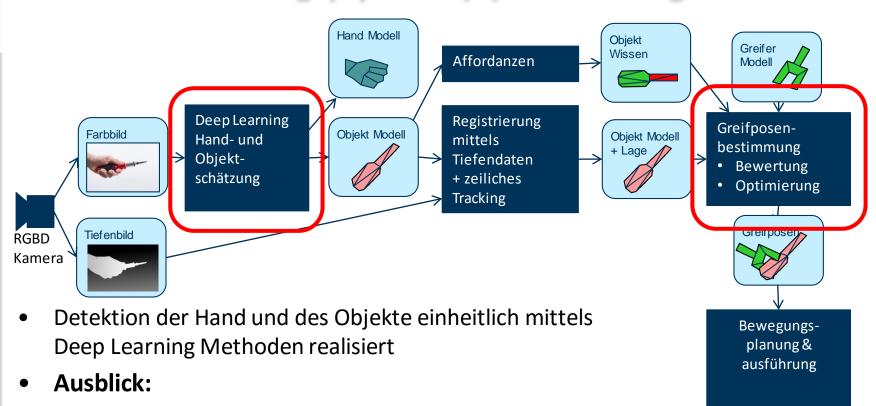
Ausgangspunkt:

- Einfache Pipeline für den Zugriff mittels ICP Objekttracker (bekanntes Modell), analytischer Greifposenplaner und ROS Movelt (Demo letzter Workshop)
- Probleme mit Kalibrierung der Robotertiefenkamera verursacht Fehlgriffe (3cm daneben)
- GGCNN Ansatz + Movelt (Tiefenbild direkt auf Greifpose abbilden)

Erreichter Stand:


- Definition zweier alternativer Verarbeitungspipelines
- Integration der Verfahren zur Greifposendetektion mit CNN
- Integration eigener Bewegungsplaner

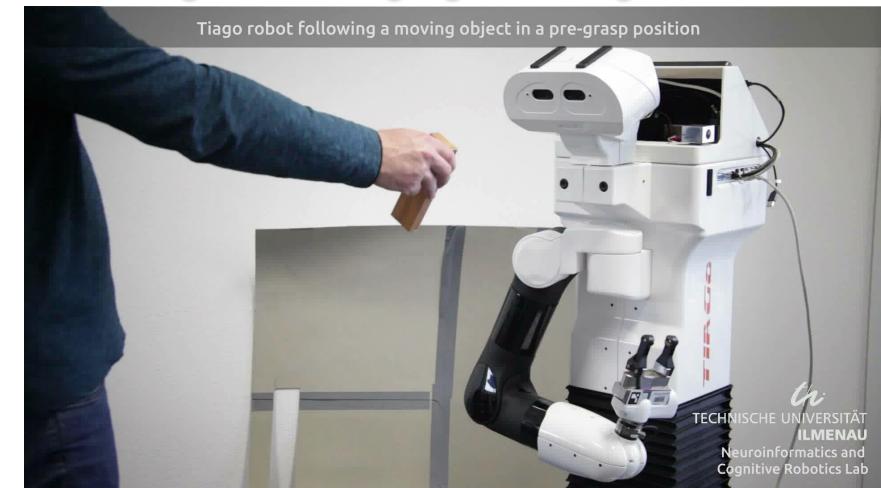
Datenverarbeitungspipeline (a) für den Zugriff



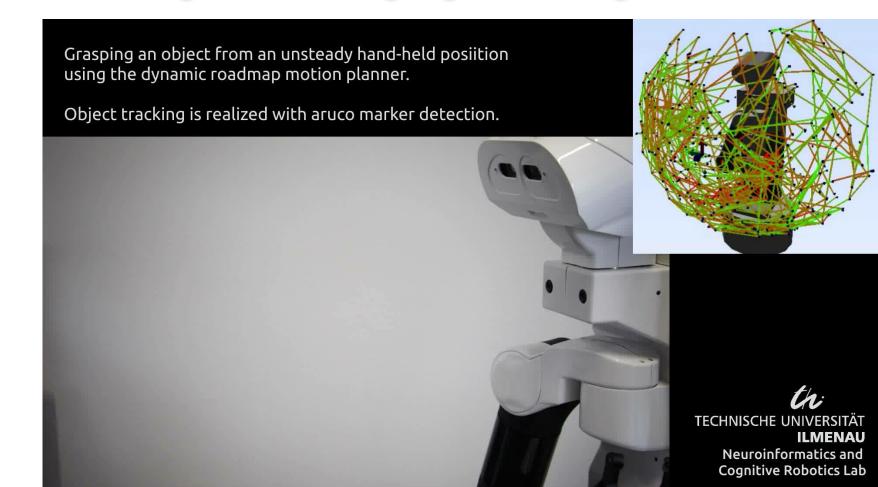
Dr. Steffen Müller

Datenverarbeitungspipeline (b) für den Zugriff

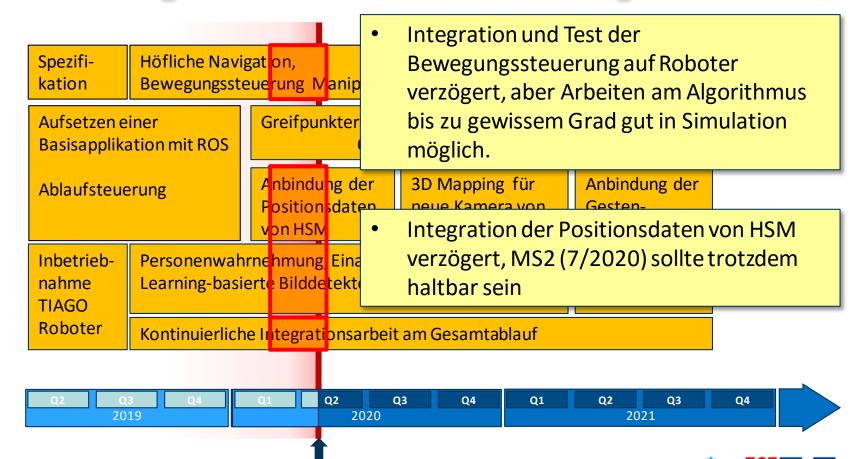
Ggf. weitere Integration mit Affordanzschätzung und Greifpunktermittlung



Dr. Steffen Müller


Demo: Integration Bewegungssteuerung

Dr. Steffen Müller



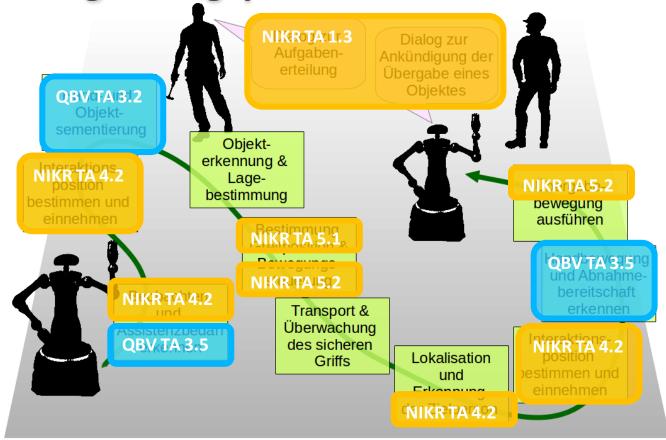
Demo: Integration Bewegungssteuerung

Auswirkungen von Corona Einschränkungen

Agenda

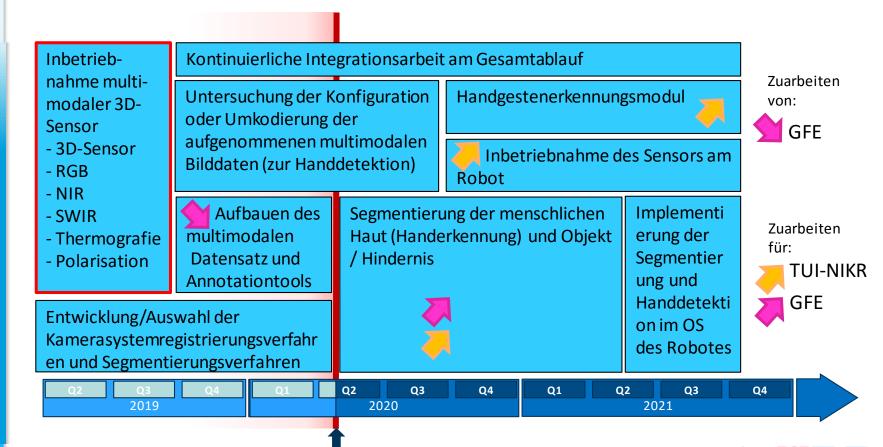
13:00	Prof. Groß	Begrüßung der Teilnehmer und Einführung zu den Eckdaten des Projektes im 2. Halbjahr
13:15	Dr. Müller	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-NIKR
13:40	M.Sc. Zhang	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-QBV
14:05	M.Sc. Schneider	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von HSM
14:30	Dr. Garten	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von GFE
14:55		Diskussion mit dem Beirat zur Schwerpunktsetzung und Vorgehensweise

Forschergruppe SONARO

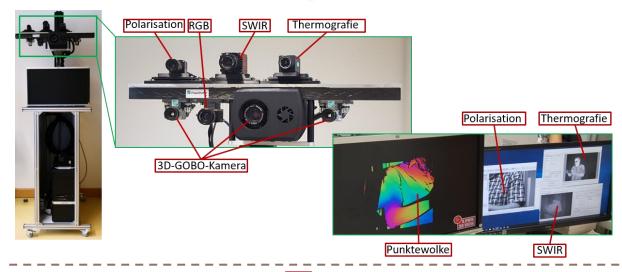

Smarte Objektübernahme und –übergabe für die nutzerzentrierte mobile Assistenzrobotik

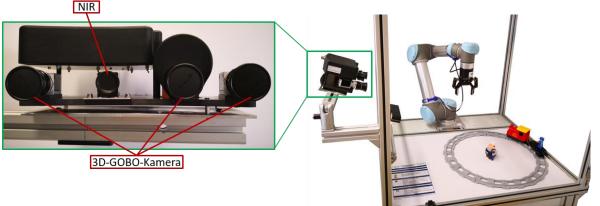
Beiratstreffen am 26.5.2020 Vorstellung der Arbeiten von TU-Ilmenau QBV M.Sc. Yan Zhang

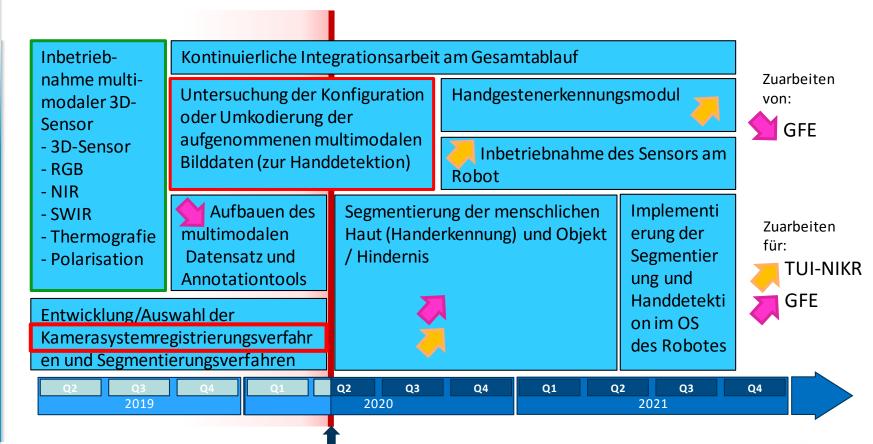
Abdeckung durch geplante AP in SONARO


Einordnung des FG TUI-QBV in SONARO

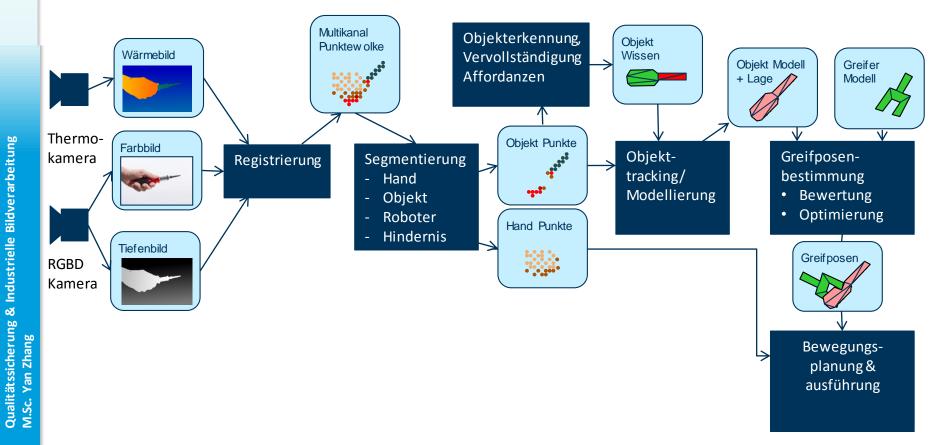
Arbeitsplan für TUI-QBV über die Projektlaufzeit



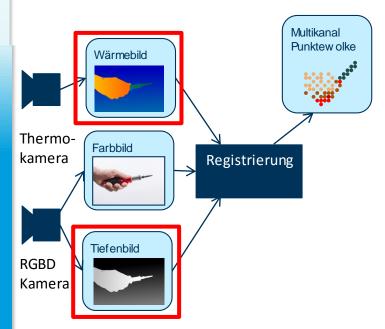



Modulares Sensorsystem

Arbeitsplan für TUI-QBV über die Projektlaufzeit



Datenverarbeitungspipeline (a) für den Zugriff



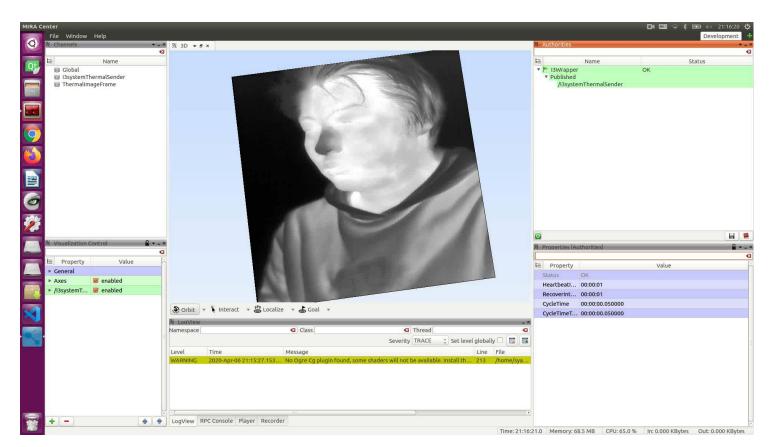
Datenverarbeitungspipeline (a) für den Zugriff

- Optimale Konfiguration:
 - RGBD + Thermo (RGBDT)
- Registrierung:
 - Thermo-Kamera -> 3D-Kamera
 - RGB-Kamera -> 3D-Kamera
- Ziel: Multikanal-Punktwolke

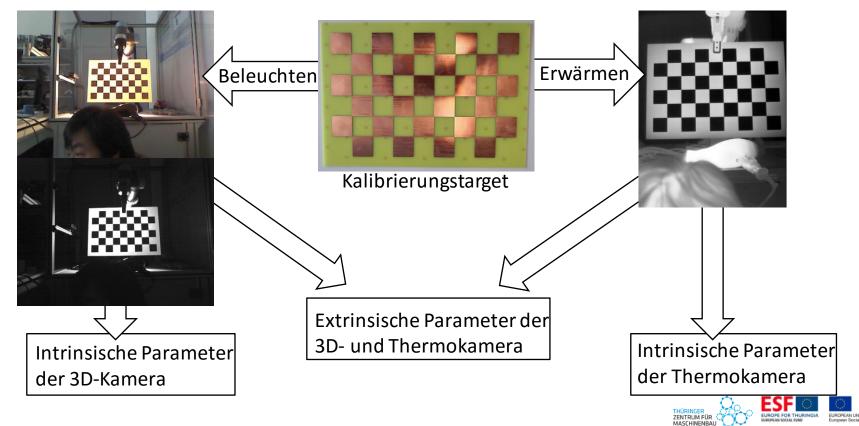
Thermokamera

- Zur sicheren Erkennung der menschlichen Haut
- Thermalkamera: i3system Thermal Expert V1
 - Auflösung: 480 x 640
 - Messbereich: -10 bis +120°C
 - Bildrate: 30Hz
 - Anschluss: Micro USB
 - Linse: LWIR 19mm f1.0
 - Linux-SDK

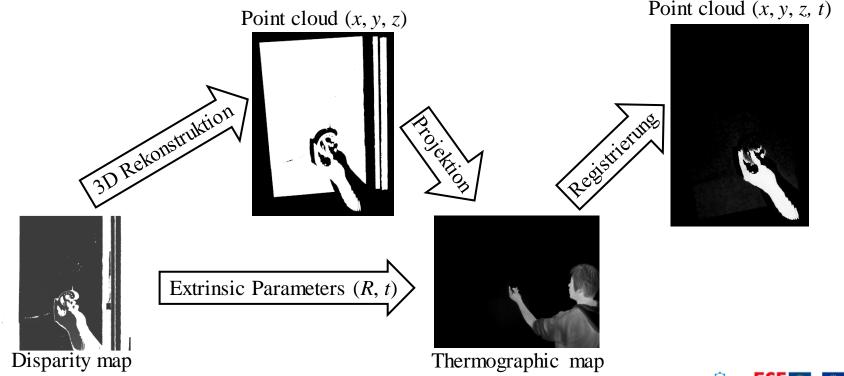
1 published Channels: Thermobild (mira::Img)

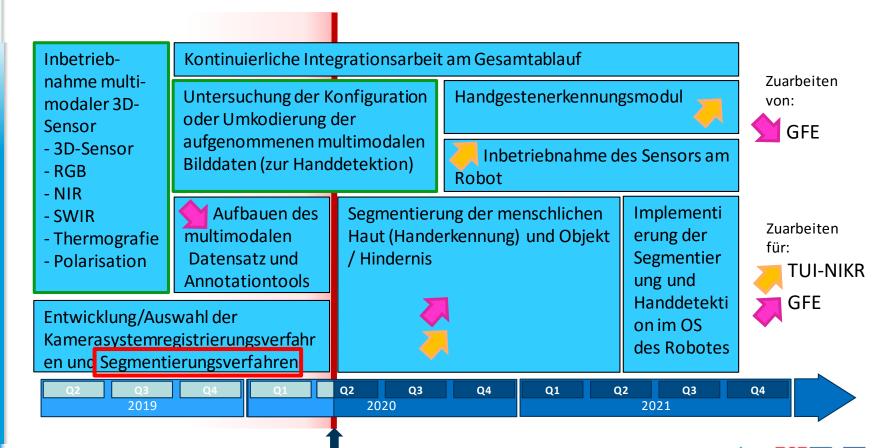


Integration der Thermokamera in ROS und MIRA



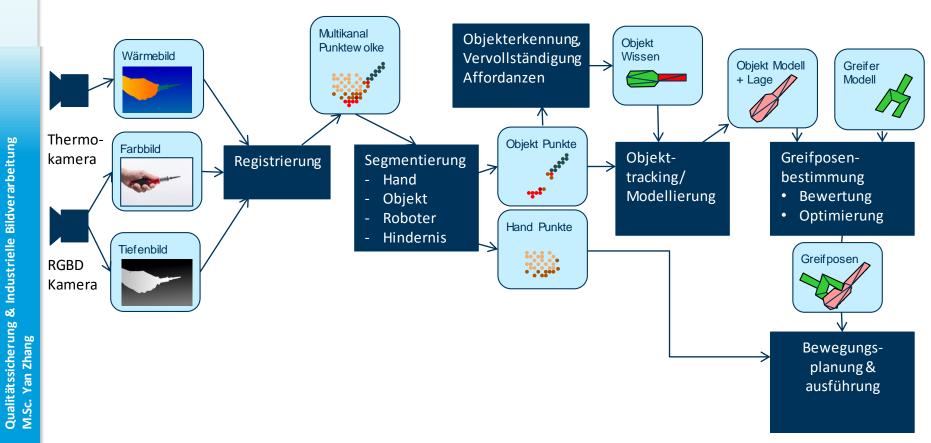
Registrierung des Kamerasystems


Kalibrierung der Kameraparameter

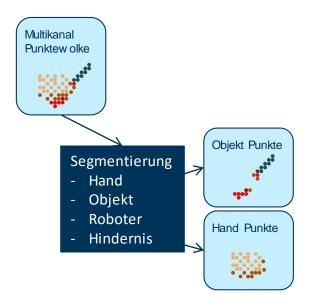

Registrierung des Kamerasystems

Registrierungsverfahren (Thermokamera->3D-Kamera)

Arbeitsplan für TUI-QBV über die Projektlaufzeit

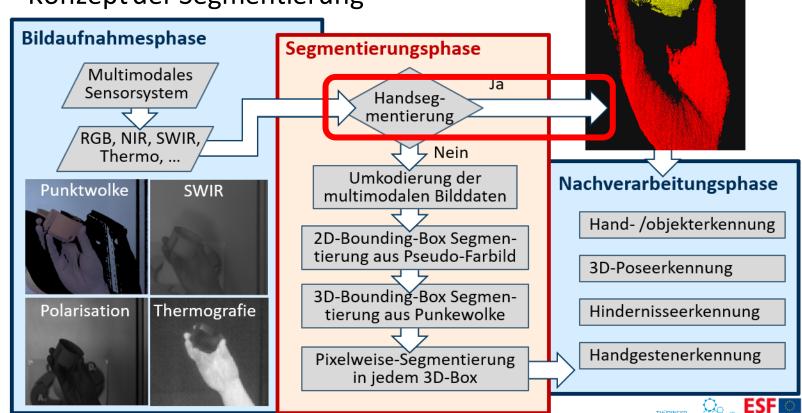


Datenverarbeitungspipeline (a) für den Zugriff



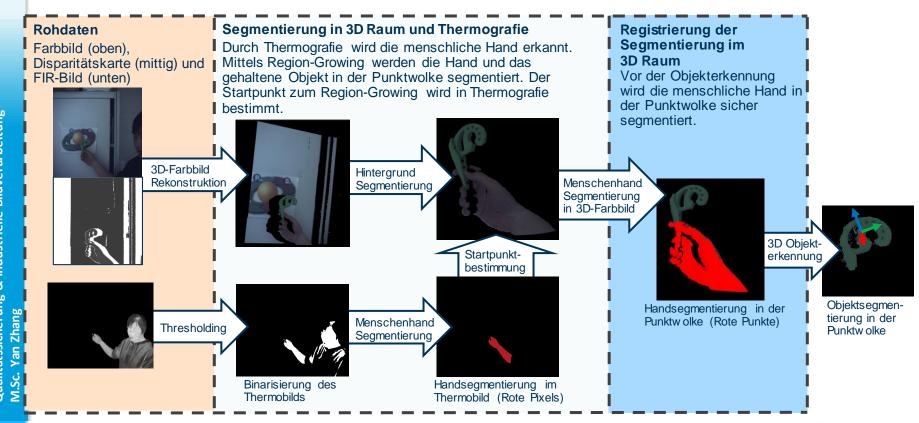
Datenverarbeitungspipeline (a) für den Zugriff

- Hand- und Objektsegmentierung
- Objekte und menschliche Hände sollen sicher getrennt werden.
- **Ziel:** Sichere Objektübernahme



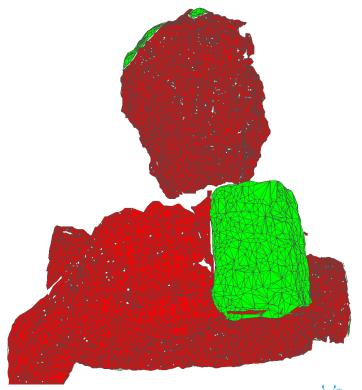
Segmentierung

Konzept der Segmentierung



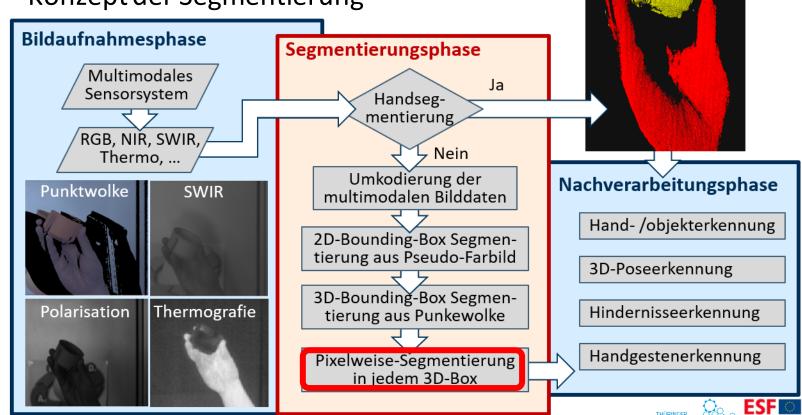
ZENTRUM FÜR

Hand-Objekt-Segmentierung



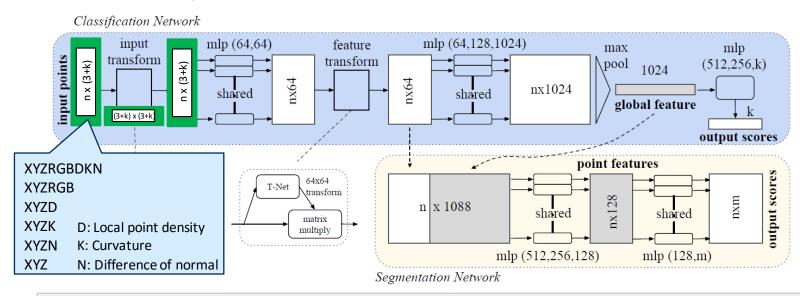
Hand-Objekt-Segmentierung

Segmentierung mittels Thresholding (Meshdarstellung)



Segmentierung

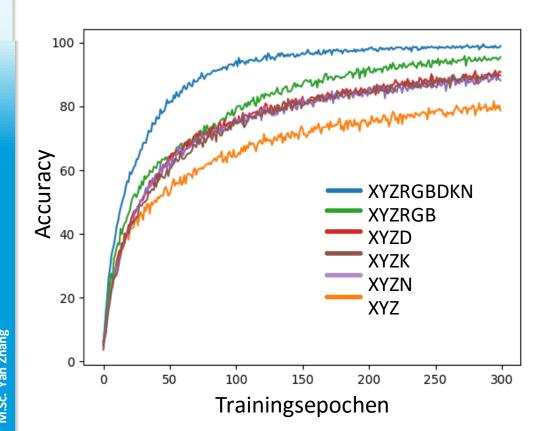
Konzept der Segmentierung


ZENTRUM FÜR

Pixelweise Segmentierung mittels PointNet

Ansatz:

Anwendung der PointNet Architektur auf multimodalen Daten


Qi, C.R. (2017). "Pointnet: Deep learning on point sets for 3d classification and segmentation", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 652-660).

Experiment mit PointNet

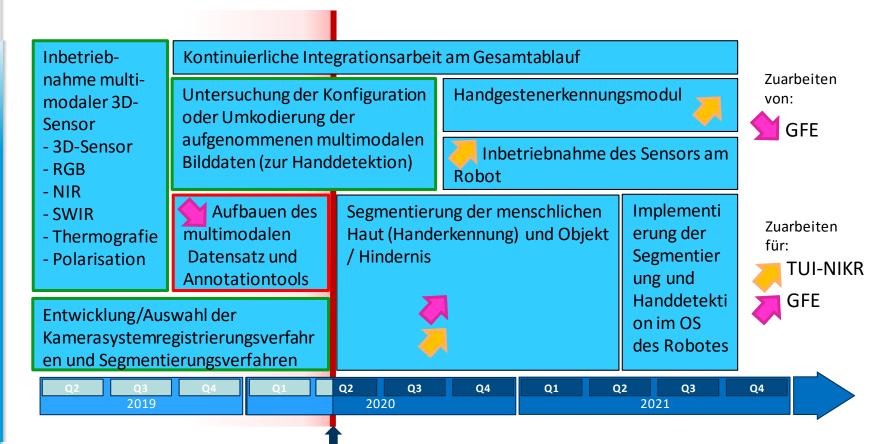
Objektklassifikation mittels PointNet

Ergebnis:

Hinzunahme von weiteren Kanälen verbessert die Klassifikationsleistung

Ausblick:

Trainieren einer HandObjektsegmentierung mit
Pointnet auf XYZRGBThermo
Daten
→Aufbau einer eigenen
Trainingsdatenbank



Arbeitsplan für TUI-QBV über die Projektlaufzeit

Multimodaler Datensatz für Hand/Objektsegmentierung

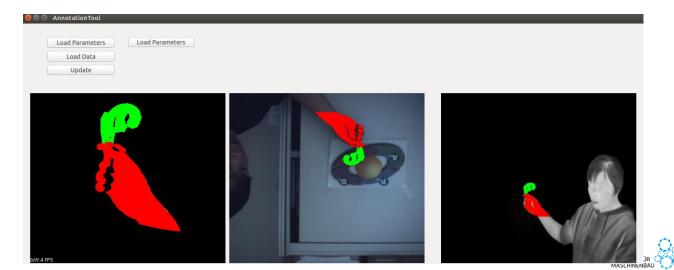
Erreichter Stand:

- 10 Klassen Objekte & Insgesamt 600 Bilder
- Archivierung auf NAS (*.npz)
- Registrierte Farb- und Thermopunktwolke
- 3D-Modellierung von Objekten (Mesh) noch ausstehend

Disparity map

Color map

Thermographic map



Annotationstool basierend auf multimodalen Bilddaten

• Ziel: automatischer Transfer von Labeldaten (pixelweise) zwischen verschiedenen Bildmodalitäten

• Erreichter Stand:

- Region growing (3D Magic wand tool)
- Mittels der Registrierung der Punktwolke und des Thermobilds werden die Hand und das Objekt segmentiert.

Der Neue mobile Roboter RB-Kairos 10

- Eine mobile Plattform mit einer RGBD-Kamera und 2 Laser Scannern
- Ein Arm (Universal Robots 10)
- Hand mit fünf Finger (SCHUNK SVH 5-Fingerhand)

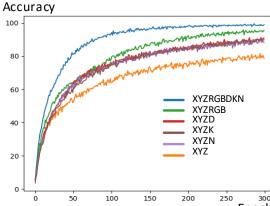
Publikation

Für die Konferenz:

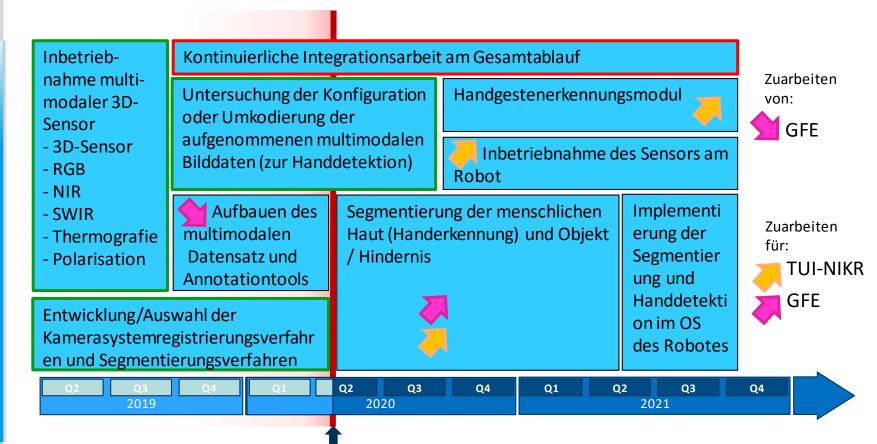
International Instrumentation & Measurement Technology Conference 2020

 Titel: "6D Object Pose Estimation Algorithm Using Preprocessing of Segmentation and Keypoint Extraction"

Inhalt:


 Bisherige Ergebnisse zu multimodalen YOLO Detektor (siehe erster Workshop) und multimodalen PointNet

Definition	Bezeichnung
Tiefe	Z
Lokale Punktdichte	D
Oberflächen-krümmung	K
Normalenvektor-differenz	N
Grauwert/Helligkeit	I
Farbton	Н
Sättigung	S



Arbeitsplan für TUI-QBV über die Projektlaufzeit

Integration auf dem Roboter / Demonstrator

Erreichter Stand:

- Registrierung der Thermokamera mit einem existierenden RGB-D Sensor (Astra Orbbec) wie er auch im Roboter verbaut ist.
- Integration der Kamera und Registrierungssoftware im MIRA Framework als Voraussetzung für die Nutzung auf dem Roboter

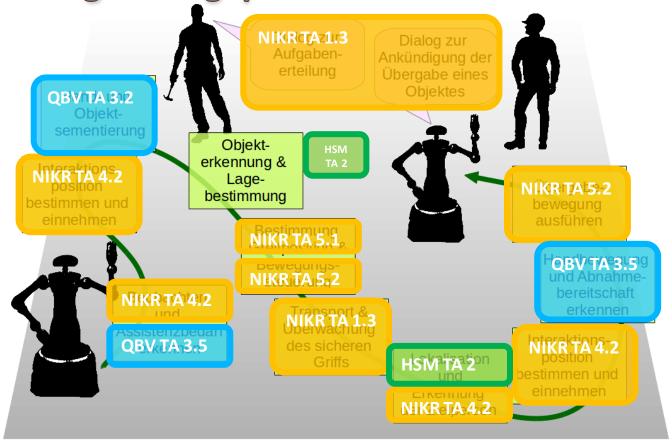
Ausblick:

 Montage der Thermokamera am Kopf des Roboters

Agenda

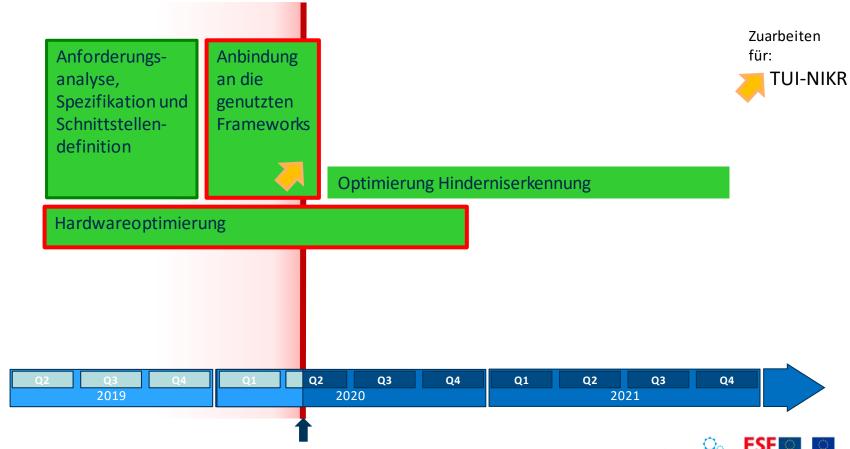
13:00	Prof. Groß	Begrüßung der Teilnehmer und Einführung zu den Eckdaten des Projektes im 2. Halbjahr
13:15	Dr. Müller	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-NIKR
13:40	M.Sc. Zhang	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-QBV
14:05	M.Sc. Schneider	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von HSM
14:30	Dr. Garten	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von GFE
14:55		Diskussion mit dem Beirat zur Schwerpunktsetzung und Vorgehensweise

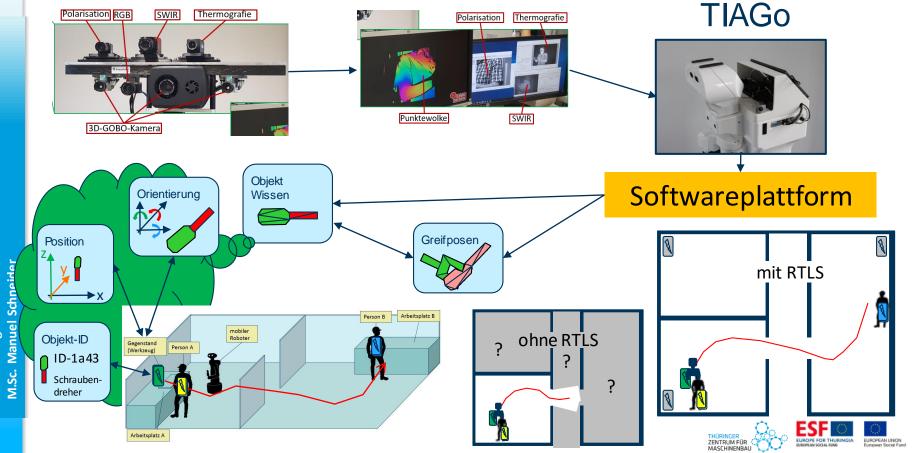
Forschergruppe SONARO Smarte Objektübernahme und –übergabe für die nutzerzentrierte mobile Assistenzrobotik


Beiratstreffen am 26.5.2020 Vorstellung der Arbeiten von HSM FG EDS

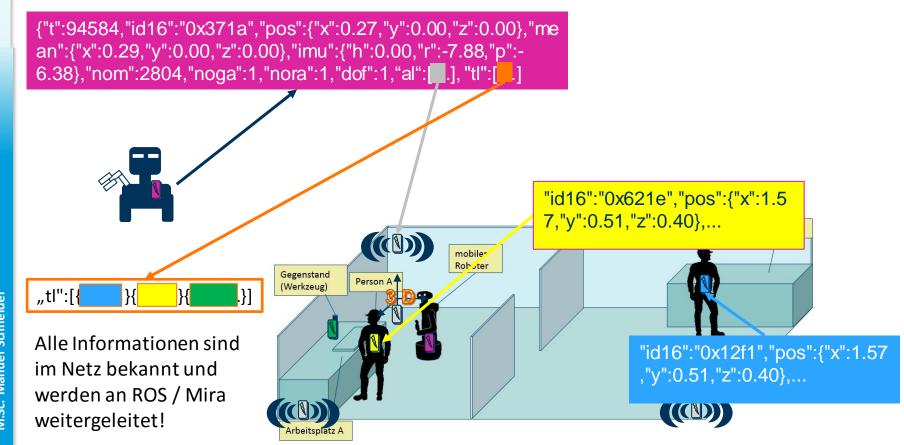
M.Sc. Manuel Schneider

Abdeckung durch geplante AP in SONARO



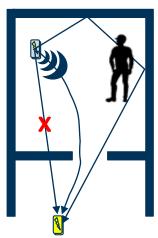


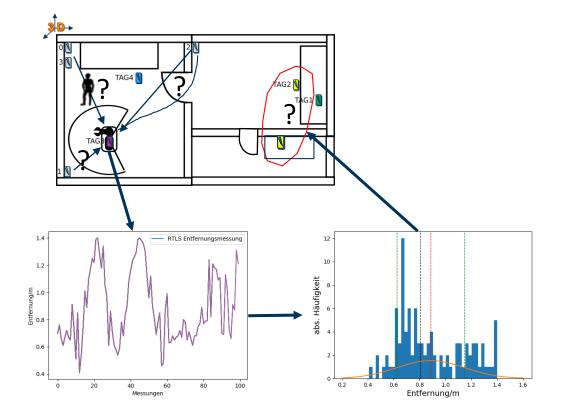
Zeitliche Planung über die Projektlaufzeit

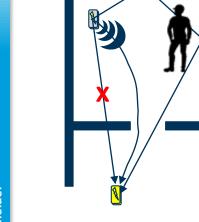


Software Schnittstellen / Anbindung an ROS & MIRA

RTLS ROS & MIRA Schnittstelle / Firmware Optimierung

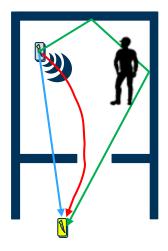


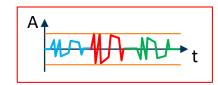


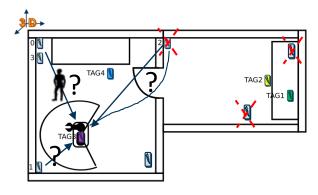


Positionsfehler und Optimierung

Positionen kann jedoch Fehlerhaft sein!

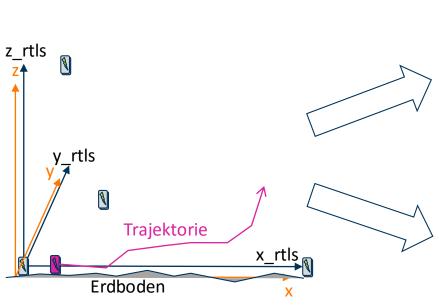


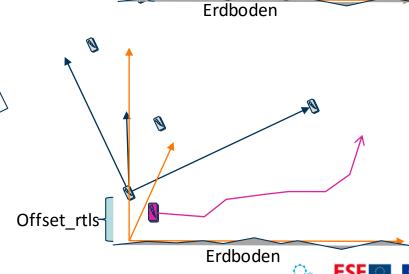




Firmwareanpassungen

- Lösung Firmware Erweiterung
 - Informationen zur Signalqualität
 - Berechnung der Signalleistung des ersten Übertragungspfades
 - Optimierung der verwendeten Anker





Statistische Versuchsplanung zur Ermittlung weiterer Einflussfaktoren

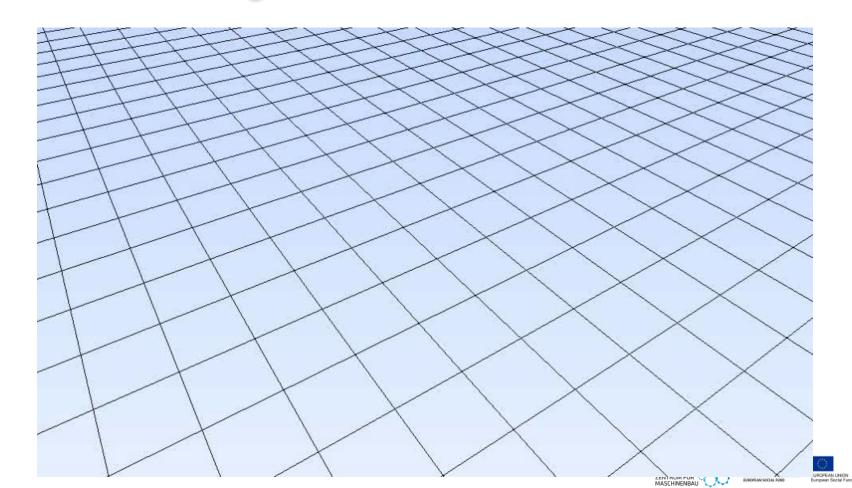
Ziel: Optimale Anordnung der Anker / Richtlinie zur Anordnung

ZENTRUM FÜR

Offset-Boden

Studentische Arbeiten / Veröffentlichungen

- Projektarbeit:
 - Tony Schneider, Nicolas Schmitt: Bestimmung materialabhängiger
 Messfehler beim Einsatz von RTLS Lokalisierungssystem
- Veröffentlichung:
 - N. Fränzel, N. Greifzu, M. Schneider, A. Wenzel: Robuste Lokalisierung in drahtlosen Sensornetzwerken, Tag der Forscher, HSM-Print, 2020
- Masterprojekt (geplant):
 - Sasi Kumar Selvaraj: Implementation for RTLS localisation in ROS and rviz
 - Stephan Hintz, Adrian Herrman, Nicolas Schmitt:
 Messfehlerbestimmung im 3D-Raum von UWB Signalen zur Indoor-Navigation mit RTLS


Ausblick

- Messungen mit NLOS Verbindungen
- 3D Scan des Labors / Testumgebung (Corona-Unabhängig)
- Versuchsaufbau Abhängigkeit unterschiedlicher Einflussfaktoren zur Wellenausbreitung (+Ausweichszenario)
- Laboraufbau mit RTLS und TIAGo in Ilmenau (+Fernanleitung beim Aufbau)
- Anpassung in der Berechnung für die Positionsbestimmung (Untersuchung andere Algorithmen und Optimierungen mit Python)

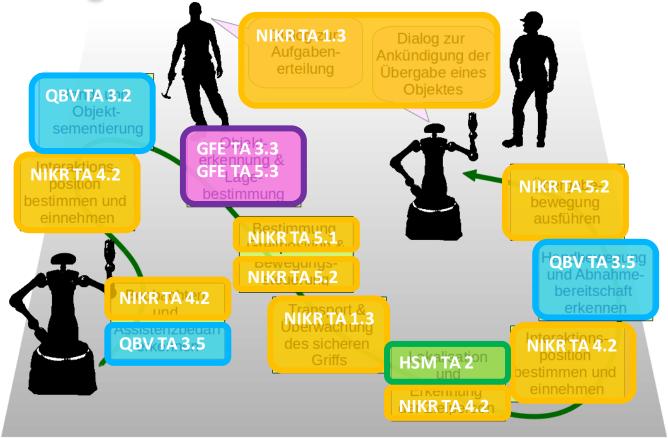
Testaufzeichnung mit realen Messdaten im MIRA

Agenda

13:00	Prof. Groß	Begrüßung der Teilnehmer und Einführung zu den Eckdaten des Projektes im 2. Halbjahr
13:15	Dr. Müller	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-NIKR
13:40	M.Sc. Zhang	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-QBV
14:05	M.Sc. Schneider	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von HSM
14:30	Dr. Garten	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von GFE
14:55		Diskussion mit dem Beirat zur Schwerpunktsetzung und Vorgehensweise

Forschergruppe SONARO Smarte Objektübernahme und –übergabe für die

Smarte Objektubernahme und –ubergabe für die nutzerzentrierte mobile Assistenzrobotik


Beiratstreffen am 26.05.2020 Vorstellung der Arbeiten von GFE Schmalkalden e. V.

Dr. Daniel Garten

Einordnung der GFE in SONARO

Zielstellung

Objekttracking, -klassifikation und Lageerkennung

- Untersuchungen zur Auswahl geeigneter Verfahren der Objektlokalisation (Deep-Learning, klassische maschinelle Lernverfahren oder Verfahren des direkten Vergleiches der segmentierten 3D-Punkte wie ICP - Iterative-Closest-Point)
- Erstellung eines parametrischen Modell des zu greifenden Gegenstands
- kontinuierliche Aktualisierung der Lage des Gegenstandes als Basis für das Greifen durch den Roboter
- Entwicklung von Prognosemodellen für die Schätzung der zukünftigen Objektposition (z. B. Kalman-Filter)

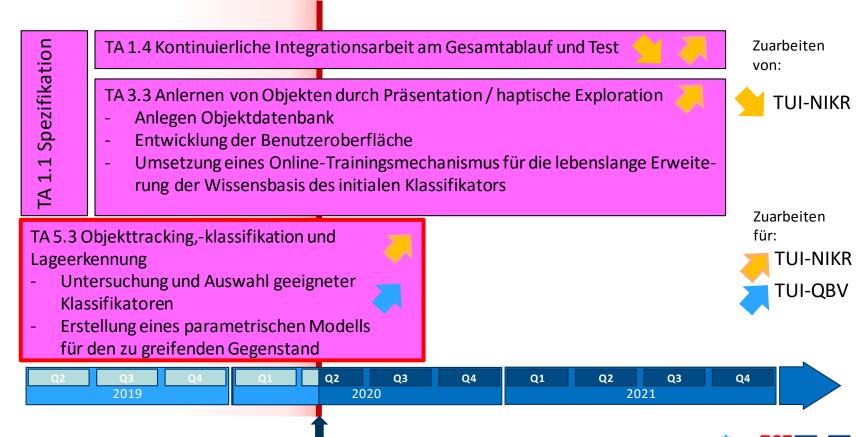
Detaillierter Arbeitsplan

Teilaufgaben (TA) und Lösungsansatz:				
TA 1.1: Anforderungsanalyse, Spezifikation und Schnittstellendefinition (abgeschlossen) Das angestrebte Szenario wird in methodische Teilleistungen zerlegt				
TA 1.4: Integration der Teilleistungen und kontinuierlicher Funktionstest (fortlaufend in Bearbeitung) Die entwickelten Verfahren der Partner werden fusioniert und in den Demonstrator integriert	2 PM			
 TA 3.3: Objekttracking,-klassifikation und Lageerkennung (aktuell in Bearbeitung) Untersuchungen zur Auswahl geeigneter Verfahren der Objektlokalisation (Deep-Learning, klassische maschinelle Lernverfahren oder Verfahren des direkten Vergleiches der segmentierten 3D-Punkte wie ICP - Iterative-Closest-Point [Rusinkiewicz 2001]]) Entwicklung von Verfahren zur Schätzung der Bewegungsparameter (Bewegungsbahn [Trajektoren], Bewegungsgeschwindigkeit) durch geeignete Verfahren wie z. B. [Hahn 2008] oder Kalman-Filter Test der Verfahren 	10 PM			
 TA 5.3: Anlernen von Objekten durch Präsentation und haptische Exploration (aktuell in Bearbeitung) Anlegen einer Objektdatenbank mit charakteristischen Greifposen und weiteren Metainformationen für den sicheren Transport und die natürliche Übergabe. 	7 PM			
Entwicklung der Nutzeroberfläche bzw. Steuerung für die Erweiterung der Wissensbasis				
 Umsetzung eines Online-Trainingsmechanismus für die lebenslange Erweiterung der Wissensbasis des initialen Klassifikators 				

Aktivitäten der GFE

Teilnahme an CIRP Winter Meetings, 19. – 22.02.2020, Paris

- Treffen der "THE INTERNATIONAL ACADEMY FOR PRODUCTION ENGINEERING" mit technischen Präsentationen, Keynotes sowie Laborpräsentationen
- Kurzvorstellung des Projektes währen des Überblicks der FuE-Tätigkeiten der GFE im Rahmen einer Laborpräsentation



Dr. Steffen Mülle

89

Arbeitsplan für GFE über die Projektlaufzeit

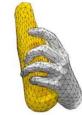
Stand der Arbeiten der GFE

Umsetzung eines Deep-Learning-basierten Ansatzes zur Schätzung des zu greifenden Objekts anhand von 2D Bildern

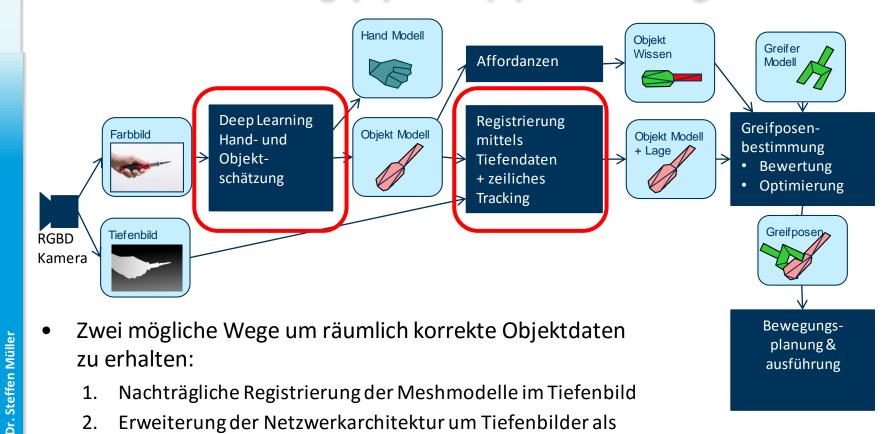
Hasson, Yana, et al. "Learning joint reconstruction of hands and manipulated objects." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Erreichter Stand:

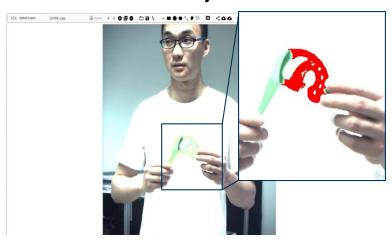
- Erkennung von alltäglichen Gegenständen sowie Regelgeometrien
- Ausgabe der geschätzten Meshes von Hand und Objekt (ohne metrische Skalierung)


Input

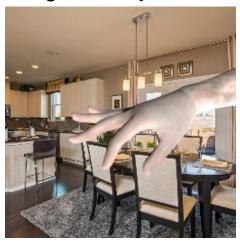
Weiteres Vorgehen:


 Fusion der Meshes mit 3D-Daten der Tiefenkameras des Roboters zur metrischen Skalierung der Objekt-Meshes

Datenverarbeitungspipeline (b) für den Zugriff



Eingang


Anlernen von Objekten durch Präsentation

Bisheriger Ansatz: Halbautomatische Annotation von Objekt und Hand

- Annotation von Hand und Objekt im Bild als Grundlage für das Training der Erkennungsroutinen
- Umsetzung eines halbautomatischen Verfahrens auf Basis von Region-Growing

Neuer Ansatz: Vollautomatische Generierung von Objekt und Hand

- Rendern synthetischer Hand-Objekt-Bilder und Meshes mit Blender (Open-source-Tool für Erzeugung von Computergrafiken)
- Verwendung des Ansatzes aus [github.com/hassony2/obman_render]

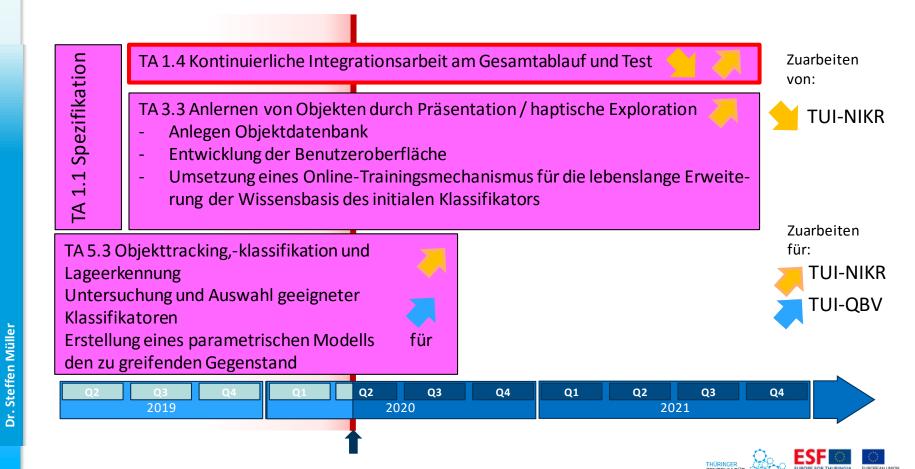
Obman-Datensatz

• Grundlage der Algorithmen aus [HAS2019] bildet der Obman-Datensatz (synthetic **Ob**ject **Man**ipulation):

https://www.di.ens.fr/willow/research/obman/data/

(verfügbar nach Registrierung und Prüfung des Einsatzes in FuE)

Daten aus Grasplt sowie dem CMU Graphics Lab Motion Capture Database



Arbeitsplan für GFE über die Projektlaufzeit

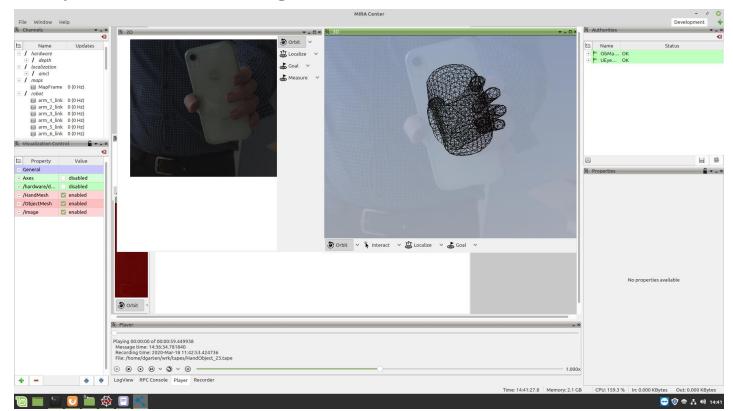
Stand der Integration in die Roboterumgebung MIRA

Erreichter Stand:

- Bildaufnahme eines Streams von uEye-Kamera
- Integration des Verfahrens in MIRA Unit
- Durchführung der Objekterkennung mit ca. 3 bis 5 Frames pro Sekunde auf NVIDIA Jetson Xavier im Roboter
- Visualisierung von Hand-Mesh und Objekt-Mesh

Weiteres Vorgehen:

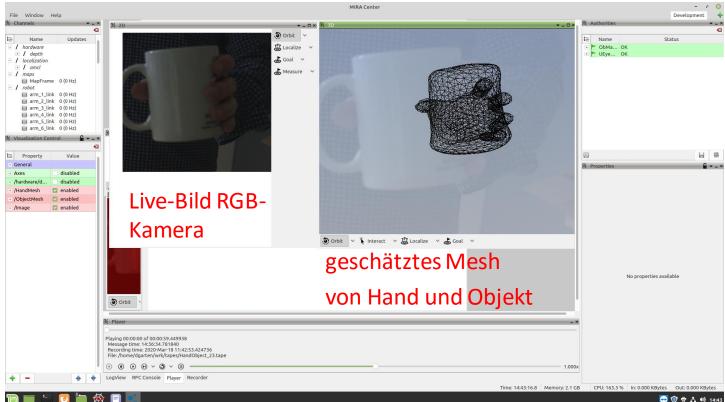
Aufnahme von RGB-D Daten für die weitere Evaluation des Verfahrens auf der Zielplattform


Steffen Müller

Q.

Stand der Integration in die Roboterumgebung MIRA

Beispiel der Erkennung eines Mobiltelefons



Dr. Steffen Müller

Stand der Integration in die Roboterumgebung MIRA

Beispiel der Erkennung einer Kaffeetasse

Stand der Integration in die Roboterumgebung MIRA

Live-Demo
Objekt- und Handsegmentierung

Zusammenfassung

- Nachtrainieren des Verfahrens mit zusätzlichen Objekt-Meshes sowie Anpassung des Ergebnis-Meshes an die Daten des Tiefensensors zur Bestimmung der Objektlage in Roboter- bzw. Globalkoordinaten sind derzeitiger Forschungsgegenstand
- Nachtrainieren kann aufgrund der Verwendung synthetischer Daten ohne Roboter und ohne agierende Menschen erfolgen
- Die Objekterkennung ist mit ca. 3 5 fps ausreichend schnell 3.
- Bei zu starker Neigung des Objektes sowie unscharfer Abbildung kommt es zu Erkennungsfehlern
- Ergebnis des Erkennungsprozesses sind Objekt-Meshes (Tracking, Lokalisation möglich) und keine Objektklassen
 - => Erweiterung um Klassifikation ist nötig

Agenda

13:00	Prof. Groß	Begrüßung der Teilnehmer und Einführung zu den Eckdaten des Projektes im 2. Halbjahr
13:15	Dr. Müller	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-NIKR
13:40	M.Sc. Zhang	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von TUI-QBV
14:05	M.Sc. Schneider	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von HSM
14:30	Dr. Garten	Fortschrittsbericht und Ausblick zu den Arbeitspaketen von GFE
14:55		Diskussion mit dem Beirat zur Schwerpunktsetzung und Vorgehensweise

Forschergruppe SONARO

Smarte Objektübernahme und –übergabe für die nutzerzentrierte mobile Assistenzrobotik

Beiratstreffen am 26.5.2020 Grobplanung für die restliche Projektlaufzeit / Diskussion mit dem Beirat

Präzisierung der Grobplanung/Zielfunktionalitäten für die kommenden zwei Jahre

Milestones	Monat	Beschreibung
MS1	01/2020	Roboter betriebsbereit, kann Personen wahrnehmen und autonom navigieren
MS2	07/2020	Mobile RTLS-Flares sind funktionsfähig und in Demonstrator integriert
MS3	07/2020	Multispektraler 3D-Sensor ist betriebsbereit und auf Roboter integriert
MS4	01/2021	Präsentierte Objekte können von Hand getrennt, klassifiziert und im Raum getrackt werden
MS5	11/2021	Roboter kann im vollständigen Ablauf Gegenstände von Person A greifen und bei B wieder übergeben
MS6	01/2022	Die Leistungsfähigkeit des Systems ist evaluiert

Diskussionspunkte

- •
- •